Menu

The Trouble with Turbulence

Seyedeh Mahnaz Modirkhazeni, a PhD candidate at UMass Lowell, has been using MGHPCC computers to explore a new technique for modeling non-equilibrium turbulent plasmas.

In contrast to laminar flow, in which a fluid moves in smooth paths or layers, turbulent fluid flows are chaotic, vary in three-dimensions, and are unsteady over a wide range of scales creating an ongoing challenge for the physicists, mathematicians, and engineers seeking to understand, model, and innovate new techniques and applications involving them. Complicating modeling non-equilibrium turbulent plasmas is the range of multi-scale physics that must be included.

Seyedeh Mahnaz Modirkhazeni
PhD candidate in the Department of Mechanical Engineering at the University of Massachusetts Lowell, working under the supervision of Prof. Juan Pablo Trelles.

Research projects

Dusty With a Chance of Star Formation
Checking the Medicine Cabinet to Interrupt COVID-19 at the Molecular Level
Not Too Hot, Not Too Cold But Still, Is It Just Right?​
Smashing Discoveries​
Microbiome Pattern Hunting
Modeling the Air we Breathe
Exploring Phytoplankton Diversity
The Computer Will See You Now
Computing the Toll of Trapped Diamondback Terrapins
Edging Towards a Greener Future
Physics-driven Drug Discovery
Modeling Plasma-Surface Interactions
Sensing Subduction Zones
Neural Networks & Earthquakes
Small Stars, Smaller Planets, Big Computing
Data Visualization using Climate Reanalyzer
Getting to Grips with Glassy Materials
Modeling Molecular Engines
Forest Mapping: When the Budworms come to Dinner
Exploring Thermoelectric Behavior at the Nanoscale
The Trickiness of Talking to Computers
A Genomic Take on Geobiology
From Grass to Gas
Teaching Computers to Identify Odors
From Games to Brains
The Trouble with Turbulence
A New Twist
A Little Bit of This... A Little Bit of That..
Looking Like an Alien!
Locking Up Computing
Modeling Supernovae
Sound Solution
Lessons in a Virtual Test Tube​
Higgs Boson Spotted in Holyoke?
Crack Computing
Automated Real-time Medical Imaging Analysis
Towards a Smarter Greener Grid
Heading Off Head Blight
Organic Light-Harvesting Antennae
Art and AI
Excited by Photons
Tapping into an Ocean of Data
All Research Projects

Collaborative projects

ALL Collaborative PROJECTS

Outreach & Education Projects

ALL OUTREACH & Education PROJECTS
100 Bigelow Street, Holyoke, MA 01040