Menu

A Genomic Take on Geobiology

Image Credit: Tanja Bosak
Geobiologists at MIT are using computers at the MGHPCC to calibrate the ancient history of life on Earth using the ultra-youthful tool of genomics. Shown here, a bubble of oxygen emerging from a cyanobacterial mat growing in the lab.

Scientists know that atmospheric oxygen irreversibly accumulated on Earth around ~2.3 billion years ago, at a time known as the Great Oxidation Event, or GOE. Prior to that time, all life was microbial, and most, if not all, environments were anoxic (that is, contained no oxygen). Oxygen was first produced sometime before the GOE through the evolution of a group of photosynthetic bacteria known as Cyanobacteria. Releasing oxygen as a by-product of splitting water in order to acquire electrons to be energized by light, this process led to dramatic changes in both the biological and geochemical processes on a planetary scale. Eventually, the continued accumulation of oxygen led to an oxidized surface, atmosphere, and ocean that persist to this day.

Abigail Caron
Student in Greg Fournier’s Lab, department of Earth, Atmospheric and Planetary Sciences, MIT

Research projects

Foldit
Dusty With a Chance of Star Formation
Checking the Medicine Cabinet to Interrupt COVID-19 at the Molecular Level
Not Too Hot, Not Too Cold But Still, Is It Just Right?​
Smashing Discoveries​
Microbiome Pattern Hunting
Modeling the Air we Breathe
Exploring Phytoplankton Diversity
The Computer Will See You Now
Computing the Toll of Trapped Diamondback Terrapins
Edging Towards a Greener Future
Physics-driven Drug Discovery
Modeling Plasma-Surface Interactions
Sensing Subduction Zones
Neural Networks & Earthquakes
Small Stars, Smaller Planets, Big Computing
Data Visualization using Climate Reanalyzer
Getting to Grips with Glassy Materials
Modeling Molecular Engines
Forest Mapping: When the Budworms come to Dinner
Exploring Thermoelectric Behavior at the Nanoscale
The Trickiness of Talking to Computers
A Genomic Take on Geobiology
From Grass to Gas
Teaching Computers to Identify Odors
From Games to Brains
The Trouble with Turbulence
A New Twist
A Little Bit of This... A Little Bit of That..
Looking Like an Alien!
Locking Up Computing
Modeling Supernovae
Sound Solution
Lessons in a Virtual Test Tube​
Crack Computing
Automated Real-time Medical Imaging Analysis
Towards a Smarter Greener Grid
Heading Off Head Blight
Organic Light-Harvesting Antennae
Art and AI
Excited by Photons
Tapping into an Ocean of Data
Computing Global Change
Star Power
Engineering the Human Microbiome
Computing Social Capital
Computers Diagnosing Disease
All Research Projects

Collaborative projects

ALL Collaborative PROJECTS

Outreach & Education Projects

See ALL Scholarships
100 Bigelow Street, Holyoke, MA 01040