
 Evaluating the Impact of Execution Parameters and Scalarization on GPU Program Vulnerability
Charu Kalra, Fritz Previlon, and David Kaeli

Department of Electrical and Computer Engineering, Northeastern University, Boston, MA
ABSTRACT

❑ While transient faults continue to be a major concern for the High Performance Computing (HPC)
 community, we still lack a clear understanding of how these faults propagate in applications.

❑ This work addresses two particular aspects of the vulnerabilities of HPC applications as run on Graphics
Processing Units (GPUs): 1) their dependence on execution parameters (input data and block sizes),

 and 2) their correlation with specific types of instructions, namely scalar and vector instructions.

❑ Our results show that the vulnerability of most of the programs studied are insensitive to changes in input
values, except in less common cases when input values were highly biased

❑ We found corruption rate can vary by up to 8% when the block size changes

❑ Our study also aims to understand the error propagation characteristics when faults occur in scalar, versus
vector, instructions

❑ This analysis will provide insight into potential architectural support required to improve the reliability of
 scalar instruction execution on GPUs.

BACKGROUND

Soft Errors in GPUs

❑ We used SASSIFI fault injection framework for our study on Kepler K20 GPU

❑ Profiler: Generates instruction count for each instruction type

❑ Seed Generator: Generates injection seeds based on the given parameters

❑ Fault Injector: Injects faults in the destination registers based on the seeds

 SCALARIZATION

 Scalar Intensity =
 Num of dynamic scalar instructions
 Total Num of dynamic instructions

Vector Intensity =
 Num of dynamic vector instructions
 Total Num of dynamic instructions

Pearson Correlation Coefficient:

 RESULTS

HPC Day 2018
Boston, MA

FRAMEWORK

GPU Program Execution

✔
MASKED
Correct output

X
SDC

Incorrect
output

˩
DUE

Non-zero exit

 Identify leader thread
 (__ffs(ballot(1))-1)

For source register Ri
 GetRegValue(Ri)

Shuffle the leader’s value across all threads

 if all values are the same
(all(regVal.asInt == leaderVal)

isScalar[i] = true

isScalar = true

Instruction is Scalar Instruction is Vector

Y N

SASS instruction

CONCLUSION
❑ The vulnerability of most of the programs studied are insensitive to changes in input values, except in less common cases

when input values were highly biased
❑ The corruption rate can vary by up to 8% when the block size changes
❑ While some scalar opcodes show positive correlation with the outcomes, others do not.

REFERENCES
1. Fritz G. Previlon, Charu Kalra, David R. Kaeli, Paolo Rech, “Evaluating the impact of execution parameters on

program vulnerability in GPU applications.” DATE 2018: 809-814
2. Charu Kalra, Fritz Previlon, Xiangyu Li, Norman Rubin, and David Kaeli, “Analyzing the Vulnerability of Vector-Scalar

Execution on Data-Parallel Architectures” SELSE 2018

Vector
Opcode

SDC DUE Masked

IADD -0.53 -0.11 0.6

ISETP -0.56 -0.04 0.6

MOV -0.58 -0.02 0.6

Scalar
Opcode

SDC DUE Masked

IADD -0.55 0.39 0.4

ISETP -0.6 0.12 0.57

MOV -0.6 0.06 0.6

1 0

GPU
hardware
storage

Storage
cell before

error

Storage
cell after

error

Soft Error

GPU

Soft Error

