
Abstract

Denoising in Monte Carlo Photon Transport Simulation Using Neural Networks

 The Monte Carlo (MC) method is deemed as the gold standard for 

modeling light propagation in turbid media, such as human tissues. 

 MC-based simulations have inherent stochastic noise, which can 

be reduced by increasing the number of simulated photons 

(SNR~ 𝑁) but at the cost of proportionally increased runtimes.

 A 12x GPU server has been built to accelerate the simulation.

 Previously, GPU-accelerated noise-adaptive non-local mean 

(ANLM) filter [1] was proposed to improve the quality of low-photon 

MC simulations.

 We present a significantly more efficient neural network model to 

remove spatially-varying noise present in MC outputs. It improves 

filtering results by 4x as compared to ANLM.

 Our proposed denoising neural network model combines two popular convolutional neural network 

(CNN) models.

 Deep CNN [3] to learn the noise, U-Net [4] to learn the photon energy degradation contour.

 Residual learning is applied to the outcome as the feedback, enabling the model to learn the 

stochastic noise.

 Monte Carlo eXtreme (MCX [2]) is a fast photon transport simulation 

software accelerated by Graphics Processing Units (GPUs). 

 It initializes simulation parameters, such as domain settings, optical 

properties and random seeds, on the host and copies them to the GPU.

 GPU threads run concurrently, where each thread carries out multiple 

photon transport simulations.

 The host waits for the GPU to complete the computation and reads the 

data (3D fluence maps and detected photons) back to the host memory. 
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Environment Setup

 100x100x100 homogeneous cube 

(1 mm3 voxel)

 absorption coefficient = 0.005 mm-1 , 

scattering coefficient = 2 mm-1,

anisotropy = 0,

refractive index = 1.37

 Pencil beam source is applied for simulation.
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 Signal-to-Noise Ratio 𝑆𝑁𝑅𝑘 𝑑𝐵 = 20 + log10
𝜇𝑘

𝜎𝑘
,

where 𝑘 is the photon number,  𝜇𝑘 is the averaged fluence rate, 𝜎𝑘 is 

the variance.

 We measure SNR using a slice along the z axis (y = 50) in the cube.

 On average, NN-Filtering improves the SNR by 25 dB and 20 dB 

over the 1e5 simulation and ANLM filtering, respectively.

 In this study, we proposed a neural network model to filter stochastic 

noise inherent in Monte Carlo photon transport simulation.

 As a result, a denoised low-photon simulation result can attain 

comparable quality as those generated from simulating photons 2 to 3 

orders of magnitude more.

 It is shown that the neural network based denoising algorithm can 

improve the SNR of the simulation by 25 dB. This is more than 4-fold 

improvement compared to the 5 dB improvement from the ANLM filter.

 We are currently developing a new approach to improve the intensity 

of the light source using the neural network model.

Hardware

 CPU: Intel  i7-7700K  @ 4.2GHz

 GPU: 12 x NVIDIA GTX 1080 Ti

 Motherboard: BIOSTRA TB250-BTC Pro (12x PCIe)

 Power supplies: 1200W+1300W+1000W

Software

 OS: Ubuntu 14.04

 Matlab R2016a

 Tensorflow 1.4 with GPU support

Training

 1e5 photon simulation images for the 

input and 1e9 photon simulation results 

for the ground truth.

Testing

 Apply neural network (NN-Filtering) on 

the 1e5 and 1e6 simulation results by 

varying the light source location.
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